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NONLIFTING WING-BODY COMBINATIONS WITH CERTAIN GEOMETRIC RESTRAINTS HAVING
MINIMUM WAVE DRAG AT LOW SUPERSONIC SPEEDS !

By Harvarp Lomax

SUMMARY

Several variational problems involving optimum wing and
body combinations having minimum wave drags for different
kinds of geometrical restraints are analyzed. Particular
attention 18 paid to the effect on the wave drag of shortening the
Suselage and, for slender azially symmetric bodies, the effect
of fizing the fuselage diameter at several points or even of fixing
whole portions of s shape.

INTRODUCTION

Reacently several authors have used linearized theory to
study the wave drag of wing-body combinations traveling
at supersonic speeds (see, e. g., refs. 1 to 5). These studies
have clearly demonstrated the importance of finding the
wave drag of & whole airplane rather than the separate
wave drags of its various parts (wings, fuselages, etc.),
since the magnitude of the interference terms can pre-
dominate. In effect, this means that various optimization
problems for bodies—such as the problem of finding the body
shape having & minimum wave drag for a given volume—
should be re-examined when interfering wings or other bodies
are in the same flow field. In many cases the solution to
the new problem differs from the body-alone problem only
in interpretation.

The purpose of this report is to study minimum wave-drag
combinations which satisfy a few of the many possible
geometric restraints pertinent to the interests of airplane
designers. An attempt has been made to analyze the
various problems in a unified manner so that extensions to
other kinds of restraints can be deduced.

LIST OF IMPORTANT SYMBOLS
A aspect ratio

ao(x) source distribution equivalent to wing in
sense defined by equation (3)

a,(x) multipole distribution of order n

D wave drag

D, portion of drag due to all the nth order
multipoles for n > 0

Dy, Dy, D,  See equation (8). -

D,, additional drag resulting from restraint (See
eq. (11).)

Jo, Ji restraints defined in equations (19)

Ly + L, distance between apexes on z axis of forecone

and aftercone enclosing wing (See fig. 3.)

'+ length of basic body

L'+ length of modification to basic body

M Mach number

pU*

g 2

R . _average body radius

SHx) fuselage area in cross section normal to the
free stream

Sw(z,0) normal (to free stream) projection of wing
ares in section cut by plane x,=x-8y, cos 8

. (See fig. 2.)

U. speed of free stream

14 volume

Y, 2 Cartesian-coordinats system (See fig. 1.)

ay(z) source distribution representing the fuselage
modifications

8 IM3—1

6 polar coordinate (See fig. 1.)

Po free-stream density

I See equation (17).

@ velocity potential

BASIC THEORY AND ASSUMPTIONS
BASIC THEQRY

Many of the discussions and derivations contained in the
following are carried out on the assumption that the reader

- ig familiar with the concepts presented in reference 4 which

should be considered as a first part to this report. In
particular, an acquaintance with the solutions to the wave
equation referred to as “multipoles” is assumed, together
with Hayes’ invariance principle and the consequent multi-
pole distributions equivalent to a wing in the sense that
both induce the same momentum spectrum at infinity.

The entire analysis used herein is based on the assumptions
and idealizations necessary to develop the linearized equation
for the velocity potential, ¢, in supersonic flow, namely

ﬁzﬁf”n_“xpn_ﬁou:() ’ (1)

where g°=M*—1 and the reference coordinate system * is
shown in figure 1. The analysis is further restricted to the
solution of problems involving a given uncambered and un-
twisted wing mounted centrally on a vertically symmetrical
fuselage, the entire configuration being at zero angle of
attack.

1 Bupersedes NACA TN 3667, “Wing-Body Combinations With Certain Geometrio Restralnts Having Low Zero-Lift Wave Drag at Low Supersonfc Mach Numbers,” by Harvard Lomax

1058,
t It should be stressed that the z axis s parallel to the free-stream direction (wind axes).
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Figure 1.—Coordinate systems used in apalysis.
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ADDITIONAL ASSUMPTIONS

We now make the two additional assumptions: one, the
value of B4, where A is the wing aspect ratio, is small; and
two, the value of BR/L,, where R is the average body radius
and 2L, is the distance along the z axis in which the multipole
strengths differ significantly from zero, is small.

One can evaluate the significance of these assumptions by
studying their implications relative to the multipole distri-
butions used to simulate the wing and body. Suppose, for
example, a group of nth order multipoles is placed along the
body center line, their strengths, C,(x), being fixed by the
condition that a circular cylinder in the vicinity of the body is
o stream surface when the velocity field induced by these
multipoles is combined with the velocity field induced by the
source sheets representing the given wing. With the assump-
tions of small A and SR/L, mentioned above, the Cy’s, forn
greater than 0, can be shown (see, e. g., ref. 4) to have a negli-
gible effect on the wave drag. Hence, all the multipoles (for
n>0) that combine with the wing to’'make a circular cylinder
a stream surface and any additional multipoles (for n>>0)
added to make the body have mild distortions from such a
surface are negligible in evaluating the wave drag. There-
fore, under the assumptions mentiond above, out of all the
singularities distributed along the body axis, it is necessary,
in studying the wave drag, to consider only the sources
(multipoles for which n=0). _

‘With the restrictions to small values of SR/L, and mild
body distortion (see Ward, ref. 6, for a discussion of orders of
magnitude), slender-body theory can be used to calculate the
body shape, and on the basis of this theory one can show
(see ref. 4, Appendix B) that S,(z), the body cross-sectional
area measured normal to the free stream, is completely deter~
mined by the axial source distribution alone. Hence, if only
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the exposed panels of the wing are used to calculate the Cy’s,
(, is negligible and the entire axial source distribution a,(z) .
is related to the geometrical properties of thé body by the

relation

as

a@)=U. —I=U.8/ @) @

THE WING EQUIVALENT SOURCE DISTRIBUTION AND THE OPTIMUM
CANCELLATION SOURCES
Let the given wing lie in the z=0 plane. According to
Hayes’ theorem (vef. 7), the wing equivalent source distribu-
tion [ae(2)}], is obtained by accumulating on the = axis, at
8 distance z from the origin, all the wing sources intercepted
by the line ;=2 By,cos 8, and then, for a fixed z, averaging
these values as 0 varies from 0 to 2x. Thus using thin-airfoil
theory to relate the planar source sheet to wing geometry,
one finds

T a@=5- [ 8./ wnds ®

where S,/ (z,0)=0/0z[S,(z,0)] and S,(z,0) is the normal
(to the z axis) projection of the wing cross-sectional arca
intercepted by the plane ? ;=x-By,cos § as shown in figure
2. Without the addition of further restraints, the optimum
source distribution along the z; axis is that which just cancels
the wing equivalent source distribution. Further, this can
be interpreted directly in terms of both fuselage and wing

S(x,8) = Normal projection
of wing orea along AA

s
e
/

<--x=x 4 By,cosd

O{J

Fiaure 2.—Area intercepted by oblique plane.

3 The true oblique plane is given by the equation
Zy=z-4-By1cos 04-Hz8in 6
but, to be consistent with the assumptions baslc to linearized theory, the varlation with z
is neglected.
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geometry by means of equations (2) and (3). Thus, with no
furtber restraints, the best fuselage shaping, for a wing-body
combination satisfying the assumptions discussed above,
satisfies the equation

§/@=—g [ S @0 @

and has any reasonably smooth cross-sectional form. Notice
that the total volume taken out of the fuselage is exactly
equal to the total volume of the exposed portion of the wing.
Hence, the total volume of the modified combination is the
same as that of the original smooth cylinder.

THE DRAG

The total wave drag of a system can be expressed in terms
of its actual or equivalent multipole distributions as

D=2Do+$D. ()

where D, is the drag .caused by the nth order multipoles
a,(z) and is given by the equation

L, .
q 41rﬁU ’f dx‘f Loo, d2st, " (21) @™V ()1 |2 —2, |
for n=0,1,2 . . . ' 6)

wherea,™t? (z) represents (0/0z)**'a.(z). Under the assump-

tions given above, the magnitude of > D, is small. Let us
1

designate it by D., so that, in general,

D=2Dy+D. )

On the other hand, the total wave drag of a system com-
posed of the combination of & wing and a body can also be
written symbolically as

D=Dw+2ow+Db (8)
where
D, drag of the wing alone
D, drag of the body alone
2D,y interference drag

The various components of wave drag defined in equations
(7) and (8) help one to evaluate more readily the drag reduc-
tions that can be realized from appropriate fuselage shapings.
Thus, if the fuselage shape satisfies equation (4), the total
wave drag of the combination under the assumptions that
B4 and BR/L, are small can be written either as

D=D, 9
or s ,
D=D,—D,

If, in finding the fuselage shape,

(a) the multipoles representing & wing and & body flying
separately are assumed to represent the same
wing and body when combined (i. e., the shape
fields can be superimposed),

(b) the multipoles representing the fuselege are equal
in magnitude but opposite in sign to the wing
equivalent multipoles,

(10)
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then equation (10) holds without the assumption of small

‘B4 and BR/L,.

In subsequent problems we will discuss the effects on the
wave drag and fuselage area distribution of adding certain
additional restreints to the body geometry. The addition
of such restraints may or may not change the relation
given by equation (10), but they must always add a term to

equation (9) so that
| D=D¢+Dra .
D, >0

WINGS CENTRALLY MOUNTED ON SLENDER
QUASICYLINDERS

(11)

This section is devoted to the solution of two problems
involving & given uncambered and untwisted wing mounted
centrally at zero angle of attack on a tube that is cylindrical
forward of some point ahead of the wing. The problems are,
in both cases, to find the area distribution of the fuselage
behind the cylindrical portion that will minimize the wave
drag of the combination.

SHORTENING THE FUSELAGE

Remembering the assumptions listed at the beginning of
this section, let us consider the following problem:

(1) Given a wing and a slender fuselage having the
same normal cross-sectional area in all planes ahead of
the plane z=—1IL, (see fig. 3), what is the optimum fuse-
lage area distribution behind the plane z=—Ly" if the
fuselage must end at the plane z=1[?

Of course, if [,> Ly (i. e., the body modification can extend
over the entire range enclosed by the forecone and aftercone
enclosing the wing), the solution is already given by equation
(4). Hence, in the following, ly<(L,.
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Fieure 3.—Wing on limited fuselage.



116

For simplicity of notations, let ay(x) represent the sources
along the fueslage center line and ao(z) Tepresent the wing
cquivalent source distribution. Then, accordmg to equation

(6)

Ly
—q—= oU gf 1y dxzlaq’ (x1)+

o' (zp)][ao’ (@) -+’ ()] Inf 2, —2|  (12)

where from the conditions stated in the problem and the
geometric interpretation to the fuselage sources given by
equation (2), ay(z) is zero for velues of z outside the interval ¢
— Ly <2<l

Consider now a variation of equation (12) for a fixed
ao(z) in the interval —Iy <z<I, and a free variation of
ay(z) in the subinterval —L,’<<z<l;. 'There results

20D~ [ o) [ [ e nle—ziint
¢P="g=) 5, 16%(94)[ _py % (@nlz—al

_l;o, ao’(xx)lnlzl—ledxz]=0

Integrate once by parts with respect to z; (since the varia-
tions dag(—Ly’) and Say(ly) must be zero). Then, by the
fundamental lemma of the calculus of variations, the brack-
eted term must be zero for —IL, <z; <, and one finds the
condition

J‘ T gy (z)dzy

~Ly T—2 o

) ao'(xz)d-"?a —0-:

£—7; —Ly <% <l (13)

Equation (13) is an mtegral equation which can be inverted
(by methods such as those outlimed in ref. 8). Inverting,
integrating once with respect to z, and expressing ay(z)
and ay(x) by means of equations (2) and (3), respectively,
one finds -

(A x)(Lo’+z)

S/ @)= f S0
Stn,(zbg)

J i) s

which gives the optimum fuselage ares distribution under the
conditions and assumptions posed.

The wave drag of the combination represented by equation
(14) can be expressed either in the terms defined in equation
(8) or (11). Let us first consider the form given by equation
(8). 1If the expression for the drag of an nth order multipole
distribution is integrated once by parts, there results since

19

a"(u-H) (_ Lo') =a, (n-+1) (L(,) =0 -~
Du_ B" (B0 o g, (z;)da,
=ity wtesin [

4 It Is necessary, for equation (6) to be valld, that ay(—Ly") and ay(?s) be 1ero. This tmplies
that ao(r) must be continuous and If the body shape is glven by equation (2), this, in turn
means that the streamwise gradient of body cross-sectional area must be continuons. It was
polnted out In reference 4 that ao(—Ly") and ae(Le) will both be zero if the wing has no blunt
edges along which the normal component of the freestream Bach numbser is unity or greater.
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Using this expression, one can show that equations (8) and

b ay(x2)dz,
_q— %U fL'a"( ‘)dxfb' T—1;

=57 sJ - “o( 1)d33f ° ao,(zx)d%

Ly T1—%3

(12) yield

50 tha.f:, by equation (13)

— b ao(xa)da:a __D
—q—— 271'U leao(z])dfo, T2 _f

Hence, for any combination satisfying equatmn (14), once

again ___
D=D”—Db

On the other bhand, D,,, the increase in drag caused by
shortening the fuselage, can also be obtained. Integrating
equation (12) by parts, one has (note D,=2D,)

D [ e taeitds, [ L@t @l

Combined with equation (13), this becomes
I ’ ’
Dy — zf ao(:c)d:cf o ao(%)‘i‘%(%)dxa

The derivative of equation (14) with respect to z gives
Zo ay/ (@) V(L' +-21) (@1 — 1) dzy;

W@t (”)_m/<lo—x)(Lo'+z)f =
—L/ <«z<l,
80
0 Gy’ (%) daxg (:ca)d:ca
Q 27"U f lg oz da I:J;o I,

-4 (xl—zaw(L.,'%)(lu— )
fﬂo o @Y T ey s ) 41,

b ’ L33

which reduces to

or, alternately, -
q" — f f oo’ (@) a (22)
|z —2a| (lo+Ly") - daeidz,  (16b)

[1/ @1 +Ly) (@g—1o)+ V(@ +Lo') @—1))?

CONSTRAINED FUSELAGE AREAS

Another class of problems is that in which the magnitude
of the fuselage area is fixed at various points. Suppose, for
example, that a fuselage shaped according. to equation (4)
had in some region a cross-sectional area too small to be
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Fiaunre 4.~Wing mounted on fuselage restrained at three sections.

accoptable for some practical purpose. The question is,
then, what is the best shape for given values of minimum
fuselage cross-section area at given planes and what is the
penalty in wave drag caused by the added constraints?
Bofore considering the general case of an arbitrary number
of restraints, let us first consider the simple problem:
(ii) Given a wing, what (under the various assump-
. tions given above) is the area distribution of the ad-
joining fuselage which has a prescribed area at three

given stations (the initial, the final, and an intermediate-

station z=d,, see fig. 4) and yields & minimum wave
drag for the combination?

As before, let ao(z) represent the wing equivalent source
distribution. Then the drag caused by the restraints can
be written

Db [ e +U 5l LTS ) g,

2
(16)

where Sy(z) is the unknown fuselage area to be optimized.
For simplicity, replace the unknown S;(z) by o(z) where

o=, Bt 5=y [ Suw0d+5

o(—Ly=8 - an
V(Lo)=Sz
Lot
ao(z)=0();

~Ly<z<d, }
(18)

ai(z)=0(2); di<zLhly
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and the restraints on the fuselage area give the relations

f_d;o 30'(”)@=[5'1 So+—f Sw(dl,o)dﬂ:l—Jo (198)

Ly 1 2x
[ ot @ao—] S8 [ Sutdutrit [=7i—dy aob)
dy : 27 Jo
where J, and J; are constants fixed by the given con-
straints. Notice

J1=(S2— ) (19¢)
8o the constant .J; is a measure of the difference between
the initial and final areas.

Using the usual variational techniques, we can write, for
the quantity to be minimized,

Duosde [* oot [*otis
{5 )

Jreon [ 2nte [ ])

By taking the variation and satisfying the conditions at the
end points, one obtains the two simultaneous integral equa~-
tions

Moo (@)dTe | (o 0" (@)dXa_ N,
f -L, 0371_272 T 4 1271—93-1 2’ ~l<lald o)
. 0
U o (@)day | (oo (z)des M, :
f -L, 031—"502 + 4 lz1—-’132 T2 d1<$1<L1?

The set of equations (20) is identical to that analyzed by
Adams (ref. 9) for bodies of revolution with fixed areas at the
initial, final, and an intermediate section. In the interest
of subsequent generalization, however, we will consider its
solution in the following way: First write the equations (20)
in the equivalent form

N,
an o (@) dxs _ X Lo<lnld 1)
e TR | S d<a<ly
One can show that
A-+Bz, o D' —dizs —dyz,
o (=22 e e —Cy cosh ™ P2 (22)

is the solution to the integral equation (where 4, B, and (}
are constants) since

(e (]

—,r[13+01 cos“1< ) d<n<ly

—Ly<z:<d,

f Lo o (z)dzs__ ©3)

-, 71—
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which satisfies equation (21). The constraints can now be
satisfied by means of the equations

o (z)=f_: (@) dz=A cos~ (2 )~ BVLT—2+

[ (@2 cost™ %m'ws_l )]
(24

and

=S A [ 2 coxt (ZEHIFF |5 [T+

£ o057t () |- oo oo™ T3

VEF=T3( ) cos™ (L2 )= = |
(25)

From equation (25) the fuselaée cross-sectional area can be written
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Since ¢’ (—Lo)=0'(Lo)=0
A=CLy*—ds’

and

=D GV TT—a L cos™ (72) ]+
G T2 [ 4 cos~t (2 )+ VEF=T7 |

Ji=—8 Lpnt G NI

Solving for C, and B, we find

B=;|IDTE_(Z’]T/’{Wd1Jo—-—JI [d]_ cos™! (‘%l + VLOz_dlﬂ]}

2 {ngJo'—Jl [dnffi?:&?+

O =TT
i (—d;
Lo cos ‘(‘zT)]}

SiD=Sas [ Sl pgam (v E— VT a0~

0

LDZ_ dlz

L (e—dy? cosh™ T +J1{(L02—-d1’)’ cos— (%f)—ﬂf:o’—z’) To—d | VId—d (di—a)+

(Lot —dyz) cos™ (:J%‘):I_Hz_dl)s [d1\/m+Lo’ cos™! (‘L_‘fl> cosh™! fﬁ;%%d}) (26)

In terms of the wing, body, and interference drag components defined in equation (8), the total wave drag is

D_De_Ds y (5,5) B+ w8Si— 5 cos™ (%)—Sa cos™ <:L%>]

g9 ¢ g

where B and C; are g'i'ven above. The equation for Dy, is

Do 1 __
¢ wLi—d)

(27x)

(T’LO’JO’—ZwJog}I [dl VIF—di+Ly* cos™ (%%):ljl'

s {a0-s0s e (e ()] }) e

If the additional specification.is made that the initial and
final aresas are the same, the solution simplifies considerably,
gince, for such cases, Ji=0 and equations (26) and (27)
reduce to

1 (™ 1
Syz)= So'—'z; J; Su(x,0) db +m [31—So+

= [ sdann) o |[ (T V==~

Lite—d coth A28 | @8)
and
Q:D” 1;” L a-f;_-_]iig)g (S1—So) [Sl_ So‘l'%;_ﬁ# Su(ds,6) dB:I

q 9
. (29a)

Often. the exact statement of the restraint is that S(z)
shall not be less than S; at z=d;. In such cases care must
be used in applying equations (26) and (27) or (28) and (29),
since they are only valid when the fuselage cross-sectional
ares at d, is exactly S;. If such is the case, equations (26}
and (28) give the optimum body shape only if J,>0, that is;
only if

2r
828 [ Suld,0)dt

Otherwise the optimum variation of area is given by equation
4).

Next let us generalize the analysis leading to equation’
(26) and (27) by considering the following problem:
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(iii) Given a wing, what is the mrea ‘distribution of

the adjoining fuselage which has préscribed areas at
n-+1 stations (including the initial &md-final ones fixed
by the Mach forecone and aftercone enveloping the
wing, see fig. 5) and welds S munmum wave drag for
the combination?

=~ Original cylinder

Modified 7 Y

' -~

Fraure 5.—Wing mounted on fuselage restrained at n-2 sections.
By analogy with equation (22), the integral equation

for o’/(z) (where o(z) is defined by eq. (17)) that must be

satisfied for & minimum wave drag can be written at once
in the form

J‘_ '/(xa)dza=)\ d-;<271<dt+1ﬂ—0 1,...,n  (30)

Ly T1—73

~where dy=—L, and dyy,=1L,. The quantity

A+Bzz _y L*—mads
._2 C; cosh™! LoEs | (31)

is a solution to equation (30) since it yields

,l(mg)

To g (@) dws
f_h p— rl:B—l—E C; cos 1( EC’, cos™ (Lo)] ,
dyr<2:<dy, v=1,2, .. ., n4+1  (32)
in which

g:_‘{C’; cos“(%o)=0
Further, it is apparent from equations (24) and (25) that,
with the conditions o/ (— Lo)—‘o"(Lo) 0

¢ =—BYIF—7+33 C,(di—2) cosh™ EI:— (33)

460104—58——9
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and

A= L " S,,(x,o)de_%[zm+

- Lg? cos™? (%j)]—%g()i{(d,_x)z cosh— 1L0| _ta ’
N by cosr (EHIF |} (39)

The wave drag due to the restraints can be obtained by
using equations (32) and (16). Thus

D,_1 12 _
—q—=§B(0'0—0"+1)—i—2§ 0{ l:’ﬂ‘a'{—o'o cos™! <%0>—

Onil cos‘l(%‘%’)] (35a)
or in terms of the components defined in equation (8)
%=&~&+B(S0—Sn+l)+:210{ [TSt—-SD (703_1 <%>'—

Syt cos~! (——L—‘f‘-)] ' (35b)
where o;=0(d;). Notice oy=S; and o¢,.;=S8,41, s0 when
SO_S -1y

D35 Gl (350)
,or .
R aar LTt (35d)

Finally, using the known values of Sy(z) at d,, v=0, 1,
, n+1, one obtains the n+-1, simultaneous equations

- [ s,(d,,'é)da—%[dvm+
z2 o™ (72) |50 @y
cosh“‘%—\m [dt cos™! (%)-l_

(Su_'SO)":

VIi—d =:|}; v=1,2, . .., nt1 (36)
which determine the n-+1 constants B, G, G, ... C,.

These, in turn, fix the shape, through equation (34), and
the wave drag, through equations (35).

Solutions similar to the above are presented in references
10 and 11, and are used therein to calculate the drag of bodies
of revolution having their areas specified at a given number
of stations. Such & method has the advantage of giving the
lower bound to the drag of bodies whose areas have been

. measured at a discrete number of places and, further, of

giving & value representative of all area variations in the
vicinity of the calculated optimum. Reference 10 contains
a tabulation of the constants necessary to evaluate the
minimum drag of an area distribution fixed at 19 points.

WINGS CENTRALLY MOUNTED ON SLENDER CLOSED
BODIES OF REVOLUTION
In the preceding section the interference between the
central portion of the airplane and its nose and tail regions
was neglected. In this portion we will consider the entire
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fuselage, assuming, first, it is a slender closed body and,
second, it can be calculated in the presence of the wing,
using the same postulates given in the previous section
“Basic Theory and Assumptions.” ’

UNLIMITED INDENTATION LENGTH, FIXED YOLUME

Let us first consider the question:

(iv) Given the wing, body length, and total volume
of the combination, what is the area distribution of the
body which yields a minimum wave drag if the apexes
of the Mach forecone and aftercone enclosing the wing
lie within the body (see fig. 6) and the specified volume
is large enough for the body to be real?

Figure 6.—Wing on closed body.

This problem can be solved in a simple manner by means
of the following lemma discovered by R. T. Jones, see
reference 1.

Designate the closed body which has a minimum wave
drag for a fixed volume and length as & Sears-Haack body. .
Then the total drag of & Sears-Haack body and any other
wing or (slender) body entirely within the fore and after
Mach cones with apexes at the tail and nose of the Sears-
Haack body, respectively, is given by the equation

D =D 1452 J4+D; 37
where
Dgz  wave drag of Sears Haack body alone
D, wave drag of second body alone
Var  volume of Sears-Haack body
Vi volume of second body

A proof of this lemma can be obtained by placing the
Sears-Haack source distribution and the wing equivalent
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multipole distributions (or the second body’s equivalent
multipole distribution) in equation (6). Since only the
sources interfere, the drag can be written in the form

DDt [ aao )da:lf’““"""(’)dx% 1

—ly Ty—2 (38)

where the interference term has been integrated by parts
and —Ly/, Ly, and —I,, l, form bounds of the arbitrary and
Sears-Haack source distributions, a,, and ayg,, respectively.
As is well known

Dsy_ 8Van

¢l (39)
and
1 ’ _SVSH 22 —1*
T O="0% T (40)

Placing equation (40) in (38) and integrating, one finds

2 I, ao (%
D=DSH*§%£%E o m‘)dxlwl

and since one can easily show
V1=——1— fo %101y, (2,)d2
Um —Ly 140, 1 1

equation (37) follows immediately.

"Returning now to problem (iv), we see that its solution
follows from equation (37) and the solution is, in fact, simply
& Sears-Haack body having, at the appropriate place relative
to the wing-body juncture, the additional ares variation
specified by equation (4). This follows, since, if D, represents
the combined drag of the wing and indentation, then V7,
the combination volume of the wing and indentation, is zero.
Hence, the minimum value of D, for a given volume, is
obtained when Dgy and D, are independently minimized.
But Dgy is already & minimum on a volume basis and D, is
minimum for a given wing. Notice the location of the
wing along the body is immaterial, provided the required
indentation can be accommodated by the fuselage.

LIMITED INDENTATION LENGTH ON SEAR-HAACK BODY, FIXED YOLUME

Consider, next, the more difficult problem
(v) Given a wing and Sears-Haack body of length
2l, (long enough to contain the apexes of the fore and
after Mach cones enclosing the wing), what modification
of this fuselage within the length [,/ + I, (and within
that length only, see fig. 7)- minimizes the total wave
drag for a given total volume? '

In order to answer this question, it is necessary to consider
separately two cases; namely, the one in which ;' > Ly’ and
1,> L, (i.e., the portion of the body free for variation contains
the apexes of the wing’s Mach cone envelope, as shown in
fig. 7) and the other in which the preceding conditions are
not satisfied.

First consider the combination for which [,’>L, and
L;>L, The wave drag of such a combinsation can always
be calculated using equation (37) wherein Dgy is the wave
drag of the basic Sears-Haack body fixed by the stationary
nose and tail portions, D, is the combined wave drag of the
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-~ Basic Sears-Hoack
<" body

[

X

T1aurRe 7.—Extent of cancellation sources for wing and Sears-
Haack body.

wing and the (as yet unknown) body indentation, and V, is
the net difference in volume between Vg, the volume of
the Sears-Haack body, and the final volume of the complete
configuration, Since the basic Sears-Haack body is fixed
and the total volume is given, the ertire term Dgg{l+(2V/
Van)] is fixed and the solution to the problem is obviously
that for which the wing equivalent sources and the source
simulating the body indentation combine to form a Sears-
Haack distribution in the interval —I,’ <e <.

Using equations (2) and (3) to relate the wing and body
gource variations to their respective areas, we find the
fusclage cross-sectional area can be written for —lh<z<—-1l’

S E)=5r2E (1 . (4w
for =/ <z<l
S,(x)—gvlsf (e mf)%—-—f S,,(x,a)da+
i Gt (@)
and for , <2<l
SAN=SVBE (12— (410)

The total wave dru.g of the wing and the fuselage as given
by equations (41) is then

D_8Vs® H__z_&), 128V;* | De
q ’E’lo ng

F L g 42)
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where De is defined by equations (5), (6), and (7).

Since, as we have been assuming, 84 is small, De ig negli-
gible, and & comparison between equations (37) and (42)
shows that the drag of the combination formed by mounting
two wing panels on & Sears-Haack body can be reduced
without a change in the total volume and with & modifica-
tion limited to the interval —[,’<<z<l; by the difference
between the drag of the fwo panels flying alone and the
drag of a Sears-Haack body having a length equal to ;" 41,
and a volume equal to the volume 6f the two panels. So
long as the points 2=—1/,’ and z£=I; do not lie off the basic
body, and so long as the required indentation can be accom-
modated, this result is independent of the wing’s fore-and-eft
position.

If the body modification is limited so that either <Ly’
or <L, or both, the above results do not apply, since,
in such cases, the second body—in the sense defined above—
cannot be varied for z between —1[, and — Ly or Iy and [, or
both, and its drag cannot, therefore, be reduced to that of
an equivalent Sears-Haack body. The best modification in
this case can be calculated from the results presented in the
material immediately following.

LIMITED INDENTATION ON ARBITRARY BODY-FIXED YOLUME

Consider the question
(vi) Given & wing, a body length, and the area dis-
tribution of the fore-and-aft portions of a body, what
is the variation of area along the intermediate portion
of the body which yields & minimum wave drag for a -
fixed total volume?

Again, as in equation (17), let o(z) represent the sum of the

Basic body
{not Sears-Haoack)

e —— e

T

*Modified body
I (modifications
limited to this
portion of the
body)

\

[x

Ficure 8—Extent of modification for wing and basic body (not
Sears-Hasack).
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sources representing the basic body and the wing equivalent
source distribution,

)=y [ Sulat)id 3)

It is now convenient, however, to let o(z) be a fixed function
in the entire interval —l’ <z<l, see figure §, and let the
body modifications, which are to be optimized in the interval
—;i<z<l;.be represented by AS,(z) which ha.s the end con-

ditions
AS/ (—1)=AS8/(1)=0 *
AS{—1)=AS,L)=0 }

The change in volume caused by the body modlﬁcamon AV,
is given by

(44)

av=—["sa5/@ @)

The usual variational procedure leads directly to the
mtegral equation )

W AS/ ! (z)dxs b o’ (29)dzy
LAt (BT ethy —h<n<lls 40

where A, and A, are fixed by the condjtions given in equa-
tions (44) and (45). Equation (46) is similar in form to
equation (13) and its inversion can be obtained by use of
methods similar to those for inverting the latter equation.
Thus, the solution to equation (46) becomes for —; <z <l;

- | — o’ (,)d; 4+
87 @)==o'@ {f-lo' (@ —2)P—13

f L) o' (z)dx,
4 (zl—z)w/w_l’:l?

HEE Lt 2(V+AV)]+2I‘}

(47)
where
= f 171”0', (Zl)dxl b :cl”a' '(x]_)dxl ( 48)
e N N e

and V is the total volume of the wing and unmodified
fuselage, that is

o |
Ve— [0 s/ @yis (49)
Equation (47) integrates to give
AS @)= —o(@) = T+ ) P —

573 RE—Uh—2V +AVIW—aP+ HG)  (50)

where

T x— ll

Vi E—2H(z? _'llg)
ziz—I,?

1 (&, -1
?rfz, o) | tan =)@’ —117)

If D, is the drag of the original wing-body combination
and Dags is the drag of & body of revolution having the
ssme normal area distribution as the modification, then

-
H(a;)=}r f g o’ () [tan‘l —.—2 dx—

+’2’:| dz,  (51)
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D_D._Das 8AV

s RV+aV+iiL—21]  (520)

¢ q q
On the other hand D,, can be written
l;" +;z—a {l 5 (21— lx’fo—"z(V-l'AV)]’-i-Il } (62b)
where if

— [z—1?
G(zy,25)= P s (53

D*[q can be expressed as

D1 [ f da f @) @),z —
2 f s dor [ dase )o@+

: dxlf:’ dxea’(zl)o”(:va)G(xl,zz)] (64

LIMITED INDENTATION ON ARBITRARY BODY—FIXED DIAMETER

As a final example in_this section, consider the questior
(vi) Given a wing, & body length, and the area dis
tribution of the fore-and-aft portions of a body, wha
is the intermediate variation of fuselage area that ha
8 given ares at some intermediate station z=d; anc
yields & minimum wave drag for the combination?

Using the same definition for ¢(z) as is given in equatior

| (43), and again designating the ares modification as AS,(z)

one can apply the same methods used to develop equation
(21) and-(46) and write the integral equation for AS,(x) i
the form

f " AS/" (zg)dza b g” (:vg)d-’cg Aoy _l1’<?1<d1 (&
h S A, d<ln<ll

where ), and A, are constants whose values depend upon th
restraints.
The solution to equation (56) can be written

=h o (‘rﬂ) r____ll d:cﬂ-—

AS/ (@)=—0"(3) J_—_z‘f[ [
" o (22) I P
f; Tz, VeI dx,—A Bz |—C) cosh 1—1—1‘]—2:1
(5

-and the three constants 4, B, and () are fixed by tho co1

ditions: (1) continuous slope

[ asr@as=o e
(2) the body area at z=1; is unchanged

| ast@ds=0 (58
and (3) the body- ares at d; is given

f : A8, () do=AS,{dy) (58
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The final solution is

ASJ(QJ)———-v(IH—H(x)— * (z—dh)? cosh™? mrl—
w/ll —a:

r— d1 ll _dl:r'
tr(dn)—H(dl):I}

2L, —H(@)—Ya'=d* 14,
e [AS,(d1)+o(dl) Hia)—V=0 (1 +Iol1(2;|)

and I, and H(:c) are defined in equations (48) and (51),
respectively.
The drag can be expr&sed either as

D D, DAS

7 g

where D, is again the drag of the original unmodified com-
bination and Dag is the drag of the modification alone, or as

2_
13!" Dq* B0 4 L (34— O/ TF—aE)  (61D)

where D* and C, are defined by equations (54) and (60),
respectively, and B is given by

—ady

(69
where

Cr=gi—7

~—=+xC1ASAd)) (61a)

1 —
B =Z? (leol v l12—d12—2I1) (62)
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